

Prostate Cancer Diagnosis and quantification using Al-enabled Software (SW)

Wei Huang, MD¹, Samuel Hubbard¹, Parag Jain² and Ramandeep Randhawa²

¹Department of Pathology and Laboratory Medicine, University of Wisconsin – Madison, ²PathomIQ, Inc, California

Background

Gleason scoring system is widely used in prostate cancer grading. Cancer volume is also known to predict patient's outcome and is used for decisionmaking process [1] Accurate quantification of each Gleason Pattern (GP) is important and is demanded in pathology practice. [2,3] There are some challenges:

- > Evaluation of prostate biopsy slides is timeconsuming
- \succ High inter-observer variability [4,5]
- > Discordance of diagnosing a minor component of GP5 in prostate biopsy is reported at 48.7% between general pathologists an expert GU pathologists [6]

Our goal: Develop a universal and standardized platform for Gleason grading and GP quantification trained by GU pathologists to achieve accurate and reproducible diagnosis

Materials

1000 H&E prostate biopsy slides from the University of Wisconsin-Madison pathology archive were scanned with Aperio CS2 (Leica) at 40x.

- Slides were split into training set (800) and test set (200).
- Training slides were annotated by GU pathologist
- Balanced dataset of varied morphologies, including GP3, GP4, GP5 cancer, high-grade prostatic intraepithelial neoplasia (HGPIN), perineural invasion (PNI), vessels and lymphocytes

Disclosures

This research is sponsored by PatholQ, Inc.

Methods

> Deep Convolutional Neural Networks

- ➢Hybrid Architecture optimized for Grading
- Combination of Classification and Segmentation Networks
- \succ Multiple nets:
 - ➢Gland segmentation, Epithelial detection, Glandbased and nuclei-based grading.
- \succ Multi-scale model: multiple patch sizes at 5x to 40x resolution to capture nuclear detail as well as glandular context

Fine-Tuned Model

Sensitive to very small amount of high-grade cancer Intelligent data selection for training >ensures balanced learning across various pattern types within and across imbalanced labels >Annotation Assistant: Pathologist only needs to review

<5% of the data for annotations

			Group 1	Group 2	Group 3	Group 4	Grou
			<= 6	3 + 4	4 + 3	8	9 - 1
	Group 1	<= 6	29	2	0	0	0
	Group 2	3+4	2	64	1	0	0
	Group 3	4 + 3	0	0	21	0	0
	Group 4	8	0	0	2	20	1
	Group 5	9 - 10	0	0	1	0	57

Summary

- > Deep learning enabled cancer-grading software offers objectivity, greater efficiency and precision in prostate cancer scoring and quantification
- > Potential to help pathologists to minimize inter-observer variability and to increase efficiency and accuracy in their practice

References

- 1. Dugan, J.A., et al., The definition and preoperative prediction of clinically insignificant prostate cancer. JAMA, 1996. 275(4): p. 288-94 2. Epstein, J.I., et al., Contemporary Gleason Grading of Prostatic Carcinoma: An Update With Discussion on Practical Issues to Implement the 2014 International Society of Urological Pathology
- (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am J Surg Pathol, 2017. 41(4): p. e1-e7.
- 3. de Souza, M.F., et al., The Gleason pattern 4 in radical prostatectomy specimens in current practice Quantification, morphology and concordance with biopsy. Ann Diagn Pathol, 2018. 34: p. 13-17.
- 4. Allsbrook, W.C., Jr., et al., Interobserver reproducibility of Gleason grading of prostatic carcinoma: urologic pathologists. Hum Pathol, 2001. 32(1): p. 74-80.
- 5. De la Taille, A., et al., Evaluation of the interobserver reproducibility of Gleason grading of prostatic adenocarcinoma using tissue microarrays. Hum Pathol, 2003. **34**(5): p. 444-9.
- 6. Al-Hussain, T.O., M.S. Nagar, and J.I. Epstein, Gleason pattern 5 is frequently underdiagnosed on prostate needle-core biopsy. Urology, 2012. 79(1): p. 178-81.

Software Predicted Grade

Results

SW assisted diagnosis

Time	<1 min		
Accuracy	95+%		
Reproducibility	High		
Quantification	Precise		

